How do you divide ( 6i-4) / ( -3 i -5 )6i43i5 in trigonometric form?

1 Answer
May 20, 2016

(6i-4)/(-3i-5)=sqrt(26/17)(cosrho+isinrho)6i43i5=2617(cosρ+isinρ) where rho=tan^(-1)21ρ=tan121

Explanation:

Let us first write (6i-4)(6i4) and (-3i-5)(3i5) in trigonometric form.

a+iba+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta)reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=sqrt(a^2+b^2)r=a2+b2 and tantheta=b/atanθ=ba or theta=arctan(b/a)θ=arctan(ba)

Hence 6i-4=(-4+6i)=sqrt((-4)^2+6^2)[cosalpha+isinalpha]6i4=(4+6i)=(4)2+62[cosα+isinα] or

sqrt52e^(ialpha)52eiα, where tanalpha=6/(-4)=-3/2tanα=64=32 and

-3i-5=(-5-3i)=sqrt((-5)^2+(-3)^2)[cosbeta+isinbeta]3i5=(53i)=(5)2+(3)2[cosβ+isinβ] or

sqrt34e^(ibeta]34eiβ, where tanbeta=(-3)/(-5)=3/5tanβ=35=35

Hence (6i-4)/(-3i-5)=(sqrt52e^(ialpha))/(sqrt34e^(ibeta])=sqrt(26/17)e^(i(alpha-beta))=sqrt(28/17)(cos(alpha-beta)+isin(alpha-beta))6i43i5=52eiα34eiβ=2617ei(αβ)=2817(cos(αβ)+isin(αβ))

Now, tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)tan(αβ)=tanαtanβ1+tanαtanβ

= (-3/2-3/5)/(1+(-3/2)*(3/5))=(-21/10)/(1-9/10)=-21/10*10/1=-2132351+(32)(35)=21101910=2110101=21

Hence (6i-4)/(-3i-5)=sqrt(26/17)(cosrho+isinrho)6i43i5=2617(cosρ+isinρ) where rho=tan^(-1)21ρ=tan121