(a+bi)(a+bi) an be written in as sqrt(a^2+b^2)e^(i(tan^-1(b/a))√a2+b2ei(tan−1(ba))
Hence, (7-4i)=sqrt(7^2+4^2)(e^(itan^-1(-4/7)))=sqrt65e^(itan^-1(-4/7))(7−4i)=√72+42(eitan−1(−47))=√65eitan−1(−47)
Similarly, (3+2i)=sqrt(3^2+2^2)(e^(itan^-1(2/3)))=sqrt13e^(itan^-1(2/3))(3+2i)=√32+22(eitan−1(23))=√13eitan−1(23)
Hence (7-4i)/(3+2i)=(sqrt65e^(itan^-1(-4/7)))/(sqrt13e^(itan^-1(2/3)))7−4i3+2i=√65eitan−1(−47)√13eitan−1(23)
or sqrt5xxe^(i(tan^-1(-4/7))-(tan^-1(2/3)))√5×ei(tan−1(−47))−(tan−1(23)) or
sqrt5xxe^(i(alpha-beta)√5×ei(α−β), where alpha=tan^-1(-4/7)α=tan−1(−47) and beta=tan^-1(2/3)β=tan−1(23)