How do you divide (7-9i)/(-2-9i) in trigonometric form?

1 Answer

sqrt(442)/17[cos(tan^-1((-81)/-67))+i*sin(tan^-1((-81)/-67))] OR

sqrt(442)/17[cos(50.403791360249^@)+i*sin(50.403791360249^@)]

Explanation:

Convert to Trigonometric forms first

7-9i=sqrt130[cos(tan^-1((-9)/7))+i sin(tan^-1((-9)/7))]

-2-9i=sqrt85[cos(tan^-1((-9)/-2))+i sin(tan^-1((-9)/-2))]

Divide equals by equals

(7-9i)/(-2-9i)=

(sqrt130/sqrt85)[cos(tan^-1((-9)/7)-tan^-1((-9)/-2))+i sin(tan^-1((-9)/7)-tan^-1((-9)/-2))]

Take note of the formula:

tan (A-B)=(Tan A-Tan B)/(1+Tan A* Tan B)

also

A-B=Tan^-1 ((Tan A-Tan B)/(1+Tan A* Tan B))

sqrt(442)/17[cos(tan^-1((-81)/-67))+i*sin(tan^-1((-81)/-67))]

have a nice day!