How do you divide ( 7i+1) / ( -3i +1 ) in trigonometric form?

1 Answer
Apr 13, 2016

(7i+1)/(-3i+1)=sqrt5[cosarctan(-1/2)+isinarctan(-1/2)]

Explanation:

We first covert them into trigonometric form. In this form a+bi=r(costheta+isintheta) or a+bi=r*e^(itheta), where r=sqrt(a^2+b^2) and theta=arctan(b/a)

Hence, 7i+1=1+7isqrt50e^(ialpha), where alpha=arctan7

and -3i+1=1-3i=sqrt10e^(ibeta), where beta=arctan(-3)

Hence (7i+1)/(-3i+1)=sqrt5e^(i(alpha-beta))

As tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalpha*tanbeta) or

tan(alpha+beta)=(7-(-3))/(1+7*(-3))=10/(-20)=-1/2

Hence (7i+1)/(-3i+1)=sqrt5e^(i(arctan(-1/2)))

or (7i+1)/(-3i+1)=sqrt5[cosarctan(-1/2)+isinarctan(-1/2)]