How do you divide (-7x^3-15x^2-24x-4)/(x-4) ?
1 Answer
Feb 4, 2018
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(-7x^2)(x-4)color(magenta)(-28x^2)-15x^2-24x-4
=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(magenta)(-172x)-24x-4
=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)color(magenta)(-784)-4
=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)-788
"quotient "=color(red)(-7x^2-43x-196)," remainder "=-788
rArr(-7x^3-15x^2-24x-4)/(x-4)
=-7x^2-43x-196-788/(x-4)