How do you divide (-7x^3-15x^2-24x-4)/(x-4) ?

1 Answer
Feb 4, 2018

-7x^2-43x-196-788/(x-4)

Explanation:

"one way is to use the divisor as a factor in the numerator"

"consider the numerator"

color(red)(-7x^2)(x-4)color(magenta)(-28x^2)-15x^2-24x-4

=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(magenta)(-172x)-24x-4

=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)color(magenta)(-784)-4

=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)-788

"quotient "=color(red)(-7x^2-43x-196)," remainder "=-788

rArr(-7x^3-15x^2-24x-4)/(x-4)

=-7x^2-43x-196-788/(x-4)