How do you divide ( 8i+2) / (-i +5) in trigonometric form?

1 Answer
Jan 28, 2016

1/13+21/13i

Explanation:

(8i+2)/(-i+5)
=(2+8i)/(5-i)
=((2+8i)(5+i))/((5-i)(5+i))
=(10+40i+2i+8i^2)/(25-i^2)
=(10+42i+8(-1))/(25-(-1)) [as, i^2=(root2 (-1))^2=-1]
=(10+42i-8)/(25+1)
=(2+42i)/26
=(2(1+21i))/(2.13)
=(1+21i)/13
=1/13+21/13i