z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = 9 + 2 i , z_2 = 5 - 6 i z1=9+2i,z2=5−6i
r_1 = sqrt(9^2 + 2^2) = sqrt 85r1=√92+22=√85
theta_1 = tan ^ (-1) (2/9) = 12.53 ^@ " I Quadrant"θ1=tan−1(29)=12.53∘ I Quadrant
r_2 = sqrt(5^2 + (-67)^2) = sqrt 61r2=√52+(−67)2=√61
theta_2 = tan ^-1 (-6/ 5) = -39.81^@ = 320.19, " IV Quadrant"θ2=tan−1(−65)=−39.81∘=320.19, IV Quadrant
z_1 / z_2 = sqrt(85/61) (cos (12.53- 320.19) + i sin (12.53 - 320.19))z1z2=√8561(cos(12.53−320.19)+isin(12.53−320.19))
color(maroon)((9 + 2i) / (5-6i) = 1.18 ( 0.611 + i 0.7917)9+2i5−6i=1.18(0.611+i0.7917)