How do you divide (9+2i) / (5-6i) 9+2i56i in trigonometric form?

1 Answer
Jun 25, 2018

color(maroon)((9 + 2i) / (5-6i) = 1.18 ( 0.611 + i 0.7917)9+2i56i=1.18(0.611+i0.7917)

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = 9 + 2 i , z_2 = 5 - 6 i z1=9+2i,z2=56i

r_1 = sqrt(9^2 + 2^2) = sqrt 85r1=92+22=85

theta_1 = tan ^ (-1) (2/9) = 12.53 ^@ " I Quadrant"θ1=tan1(29)=12.53 I Quadrant

r_2 = sqrt(5^2 + (-67)^2) = sqrt 61r2=52+(67)2=61

theta_2 = tan ^-1 (-6/ 5) = -39.81^@ = 320.19, " IV Quadrant"θ2=tan1(65)=39.81=320.19, IV Quadrant

z_1 / z_2 = sqrt(85/61) (cos (12.53- 320.19) + i sin (12.53 - 320.19))z1z2=8561(cos(12.53320.19)+isin(12.53320.19))

color(maroon)((9 + 2i) / (5-6i) = 1.18 ( 0.611 + i 0.7917)9+2i56i=1.18(0.611+i0.7917)