Use e^(i theta ) = cos theta + i sin theta
( 9 + 2i )/( 5 + i )
=( a e^(i alpha) )/ ( b e^(i beta )) = (a/b) (e^(i(alpha - beta ))),
#= a/b ( cos ( alpha - beta) + i sin ( alpha - beta )
where
a = sqrt( 9^2 + 2^2 ) = sqrt 85,
b = sqrt ( 5^2 + 1 ) = sqrt26,
alpha = arccos( 9/a) and
beta = arccos(5/b).
Answer;
( 9 + 2i )/( 5 + i )
= sqrt(85/26)( cos ( arccos (9/sqrt85) - arccos ( 5/sqrt26))
+ i sin ( arccos (9/sqrt85) - arccos ( 5/sqrt26) )
= sqrt(85/26) ( cos ( 12.53^o - 11.31^o)
+i sin ( 12.53^o - 11.31^o) )
= sqrt(85/26) ( cos 1.22^o + i sin 1.22^o )
This is very very close to the value
1/26 ( 47 + i )