How do you divide (9+2i) / (5+i) in trigonometric form?

1 Answer
Aug 14, 2018

sqrt(85/26) ( cos 1.22^o + i sin 1.22^o )

Explanation:

Use e^(i theta ) = cos theta + i sin theta

( 9 + 2i )/( 5 + i )

=( a e^(i alpha) )/ ( b e^(i beta )) = (a/b) (e^(i(alpha - beta ))),

#= a/b ( cos ( alpha - beta) + i sin ( alpha - beta )

where

a = sqrt( 9^2 + 2^2 ) = sqrt 85,

b = sqrt ( 5^2 + 1 ) = sqrt26,

alpha = arccos( 9/a) and

beta = arccos(5/b).

Answer;

( 9 + 2i )/( 5 + i )

= sqrt(85/26)( cos ( arccos (9/sqrt85) - arccos ( 5/sqrt26))

+ i sin ( arccos (9/sqrt85) - arccos ( 5/sqrt26) )

= sqrt(85/26) ( cos ( 12.53^o - 11.31^o)

+i sin ( 12.53^o - 11.31^o) )

= sqrt(85/26) ( cos 1.22^o + i sin 1.22^o )

This is very very close to the value

1/26 ( 47 + i )