How do you divide ( 9i- 2) / (- 5 i+ 2 ) in trigonometric form?

1 Answer
Dec 20, 2016

=1/29 (41+8i)

Explanation:

Rewrite 9i-2 as -2+9i. Now square and the numbers -2 and 9, which would be 85. Its square root issqrt85. Multiply and divide the expression -2 +9i with sqrt85 as follows:

sqrt85 (-2/sqrt85 +i 9/sqrt85)

If theta is some angle then let cos theta= -2/sqrt85 and sin theta=9/sqrt85

Thus -2 +9i= sqrt85(cos theta +isin theta)

Like wise -5i +2 would be 2 -5i =sqrt29( 2/sqrt 29-i5/sqrt29)

If phi is some angle, then let cos phi= 2/sqrt29 and sin phi= -5/sqrt29

Thus 2-5i=sqrt29(cos phi -sin phi)

(9i-2)/(-5i+2)= sqrt(85/29) (cos theta +isin theta)/(cosphi-isin phi)=sqrt(85/29) e^(itheta)/e^(-iphi) =sqrt(85/29) e^(i(theta +phi)

=sqrt(85/29)( cos(theta+phi)+i sin (theta+phi) )

=sqrt(85/29)[ (cos theta cos phi- sin theta sin phi) +i(sin theta cos phi + cos theta sin phi)]

=sqrt(85/29)[(-2)/sqrt85 * 2/sqrt29 -9/sqrt85 * (-5)/sqrt29 +i(9/sqrt85 * 2/sqrt29 +(-2)/sqrt85 * (-5)/sqrt29)]

sqrt(85/29) (41/(sqrt85 sqrt29)+i 28/(sqrt 85 sqrt29))
=1/29 (41+28i)