How do you divide ( i-1) / (-i +10 ) in trigonometric form?

1 Answer
Jul 28, 2018

color(indigo)(=> -0.1089 + 0.0891 i, " II Quadrant"

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 = -1 + i, z_2 = 10 - i

r_1 = sqrt(-1^2 + 1^2)^2) = sqrt 2

theta_1 = tan ^-1 (1/ -1) 135^@ , " II Quadrant"

r_2 = sqrt(10^2 + (-1)^2) = sqrt 101

theta_2 = tan ^-1 (-1/ 10) ~~ 354.29^@, " IV Quadrant"

z_1 / z_2 = sqrt(2 / 101) (cos (135 - 354.29) + i sin (135 - 354.29))

color(indigo)(=> -0.1089 + 0.0891 i, " II Quadrant"