How do you divide ( i-1) / (i -2 )i1i2 in trigonometric form?

1 Answer
Apr 10, 2016

C = (3-i)/3 = 1-i/3C=3i3=1i3

Explanation:

Given: C= C_n/C_d=( -1+i)/(-2 +i )C=CnCd=1+i2+i
Required: The resultant to C_n/C_dCnCd
Solution Strategy: Multiply both nominator and denominator by complex conjugate of the denominator, C_d= -2+iCd=2+i.
Complex conjugate of C_d^"*" =(-2 -i)C*d=(2i)
Thus:
C = (C_n@C_d^"*")/(C_d@C_d^"*")=[( -1+i)@(-2 -i)]/[(-2+i )@(-2 -i)]C=CnC*dCdC*d=(1+i)(2i)(2+i)(2i)
C = (3-i)/3 = 1-i/3C=3i3=1i3