How do you divide (-i+2) / (2i+4) in trigonometric form?

2 Answers
Apr 28, 2016

(-i+2)/(2i+4)=1/2(costheta+isintheta), where theta=tan^(-1)(-4/3)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha) and z_2=r_2(cosbeta+isinbeta)

Here, if two complex numbers are a_1+ib_1 and a_2+ib_2 r_1=sqrt(a_1^2+b_1^2), r_2=sqrt(a_2^2+b_2^2) and alpha=tan^(-1)(b_1/a_1), beta=tan^(-1)(b_2/a_2)

Their division leads us to

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)} or

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}

(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta)) or

(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta)) or

z_1/z_2 is given by (r_1/r_2, (alpha-beta))

So for division complex number z_1 by z_2 , take new angle as (alpha-beta) and modulus the ratio r_1/r_2 of the modulus of two numbers.

Here -i+2 can be written as r_1(cosalpha+isinalpha) where r_1=sqrt(2^2+(-1)^2)=sqrt5 and alpha=tan^(-1)(-1/2)

and 2i+4 can be written as r_2(cosbeta+isinbeta) where r_2=sqrt(4^2+2^2)=sqrt20=2sqrt5 and beta=tan^(-1)(2/4)=tan^(-1)(1/2)

and z_1/z_2=sqrt5/(2sqrt5)(costheta+isintheta), where theta=alpha-beta

Hence, tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=((-1/2)-(1/2))/(1+(-1/2)xx(1/2))=(-1)/(3/4)=-4/3.

Hence, (-i+2)/(2i+4)=1/2(costheta+isintheta), where theta=tan^(-1)(-4/3)

Jun 30, 2016

(-i+2)/(2i+4)=1/2(costheta+sintheta) ,where theta=tan^-1(-4/3)

Explanation:

(-i+2)/(2i+4)

=1/2*((2-i)(2-i))/((2+i)(2-i))

=1/2*(2^2+i^2-2*2i)/(2^2-i^2)

=1/2*(4-1-4i)/(4-(-1))

=1/10(3-4i)

Now sqrt(3^2+4^2)=5 ,So

The given expression

=1/2(3/5-4/5i)

Now if we take 3/5=costheta and -4/5=sintheta
i.e.tantheta=-4/3
then we can write

(-i+2)/(2i+4)=1/2(costheta+sintheta) ,where theta=tan^-1(-4/3)