How do you divide ( i+2) / (7i +3) in trigonometric form?

1 Answer
Jan 5, 2018

sqrt(290)/58(cos(40.24)-isin(40.24))

Explanation:

For a complex number z=a+bi, we can rewrite it in the form z=r(costheta+isintheta), where r=sqrt(a^2+b^2) and theta=tan^(-1)(b/a)

z_1=2+i
r_1=sqrt(2^2+1^2)=sqrt(5)
theta_1=tan^(-1)(1/2)
z_1=sqrt(5)(cos(tan^(-1)(1/2))+isin(tan^(-1)(1/2))

z_2=3+7i
r_2=sqrt(3^2+7^2)=sqrt(58)
theta_2=tan^(-1)(7/3)
z_2=sqrt(5)(cos(tan^(-1)(7/3))+isin(tan^(-1)(7/3))

z_1/z_2=r_1/r_2(cos(theta_1-theta_2)+isin(theta_1-theta_2))

z_1/z_2=sqrt(5)/sqrt(58)(cos(tan^(-1)(1/2)-tan^(-1)(7/3))+isin(tan^(-1)(1/2)-tan^(-1)(7/3)))
~~sqrt(290)/58(cos(-40.24)+isin(-40.24))

Since cos(x)=cos(-x) and sin(-x)=-sin(x)

=sqrt(290)/58(cos(40.24)-isin(40.24))