We have
\frac{-i+8}{2i+7}−i+82i+7
=\frac{8-i}{7+2i}=8−i7+2i
=\frac{\sqrt{65}(\cos(-\tan^{-1}(1/8))+i\sin(-\tan^{-1}(1/8)))}{\sqrt{53}(\cos(\tan^{-1}(2/7))+i\sin(\tan^{-1}(2/7)))}=√65(cos(−tan−1(18))+isin(−tan−1(18)))√53(cos(tan−1(27))+isin(tan−1(27)))
=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(1/8)-\tan^{-1}(2/7))+i\sin(-\tan^{-1}(1/8)-\tan^{-1}(2/7)))=√6553(cos(−tan−1(18)−tan−1(27))+isin(−tan−1(18)−tan−1(27)))
=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(23/54))+i\sin(-\tan^{-1}(23/54)))=√6553(cos(−tan−1(2354))+isin(−tan−1(2354)))
=\sqrt{\frac{65}{53}}(54/\sqrt3445-i23/\sqrt{3445})=√6553(54√3445−i23√3445)
=\sqrt{\frac{65}{53\times 3445}}(54-23i)=√6553×3445(54−23i)
=1/53(54-23i)=153(54−23i)