How do you divide #(x^3 - 4x^2+2x - 8)/(2x^2+4x-2)#?

2 Answers
May 17, 2017

#x/2-3+(15x-14)/(2x^2+4x-2)#

Explanation:

#" "x^3-4x^2+2x-8#
#color(magenta)(+x/2)(2x^2+4x-2)-> ul(x^3+2x^2-x) larr" Subtract"#
#" "0-6x^2+3x-8 #
#color(magenta)(-3)(2x^2+4x-2)->" " ul(-6x^2-12x+6)larr" Subtract"#
#" "0color(magenta)(color(white)(.)+15x-14larr" Remainder") #

#color(magenta)(x/2-3+(15x-14)/(2x^2+4x-2))#

May 17, 2017

#(x^3 - 4x^2+2x - 8)/(2x^2+4x-2) = (x-6)/2 +(15x-4)/(2(x^2+4x-2))#

Explanation:

When working with algebraic fractions, try to factorise first:

#(x^3 - 4x^2+2x - 8)/(2x^2+4x-2)" "(larr "try grouping")/(larr"HCF, quadratic trinomial")#

#=(x^2(x-4)+2(x-4))/(2(x^2+2x+1))#

#= ((x-4)(x^2+2))/(2(x+1)(x+1))#

This cannot be simplified, there are no common factors to cancel

Let's do long division:

#(x^3 - 4x^2+2x - 8)/(2x^2+4x-2) = (x^3 - 4x^2+2x - 8)/(2(x^2+2x-1)#

Let's divide by #(x^2+2x-1)# to start, and divide by #2# later

#color(white)(......................................)x-6#
#x^2+2x-1 )bar(x^3 - 4x^2+2x - 8)#
#color(white)(.....................)ul(x^3 +2x^2-x)" "larr# subtract
#color(white)(........................)-6x^2+3x-8#
#color(white)(.........................)ul(-6x^2-12x-6)" "larr# subtract
#color(white)(.......................................)15x-14" "larr# remainder

We still need to divide by #2#. Therefore we have:

#(x^3 - 4x^2+2x - 8)/(2x^2+4x-2) = (x-6)/2 +(15x-4)/(2(x^2+4x-2))#