How do you divide (x^3+x+3)/(x-5)?

3 Answers
Oct 28, 2017

The remainder is color(red)(133) and the quotient is =x^2+5x+26

Explanation:

Let's perform a synthetic division

color(white)(aa)5color(white)(aaaaa)|color(white)(aaa)1color(white)(aaaaa)0color(white)(aaaaaa)1color(white)(aaaaaaaaaa)3
color(white)(aaaaaaaaaaaa)------------

color(white)(aaaa)color(white)(aaaa)|color(white)(aaaa)color(white)(aaaaa)5color(white)(aaaaaa)25color(white)(aaaaaaaa)130
color(white)(aaaaaaaaaaaa)------------

color(white)(aaaa)color(white)(aaaa)|color(white)(aaa)1color(white)(aaaaa)5color(white)(aaaaaa)26color(white)(aaaaaaaa)color(red)(133)

The remainder is color(red)(133) and the quotient is =x^2+5x+26

(x^3+x+3)/(x-5)=x^2+5x+26+133/(x-5)

Oct 28, 2017

x^2+5x+26+133/(x-5)

Explanation:

"one way is to use the divisor as a factor in the numerator"

"consider the numerator"

color(red)(x^2)(x-5)color(magenta)(+5x^2)+x+3

=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(magenta)(+25x)+x+3

=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(red)(+26)(x-5)color(magenta)(+130)+3

=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(red)(+26)(x-5)+133

"quotient "=color(red)(x^2+5x+26)," remainder" =133

rArr(x^3+x+3)/(x-5)=x^2+5x+26+133/(x-5)

Oct 28, 2017

Quotient=x^2+5x+26 and remainder133/(x-5)

Explanation:

color(white)(..........)color(white)(.)x^2+5x+26
x-5|overline(x^3+0+x+3)
color(white)(............)ul(x^3-5x^2)
color(white)(......................)5x^2+x
color(white)(......................)ul(5x^2-25x)
color(white)(..................................)26x+3
color(white)(..................................)ul(26x-130)
color(white)(................................................)133

(x^3+x+3) / (x-5) = x^2+5x+26+133/(x-5)