How do you divide #(x^4 - 3x - 5)/(x+2)#?

1 Answer
Aug 8, 2016

#x^3-2x^2+4x-11+17/(x+2)#

Explanation:

Note that I use place keepers that have no value. This is done to make sure things line up properly. Example#-> 0x^2#

Numerator#" "->" "x^4+0x^3+0x^2-3x-5#
#color(magenta)(x^3)(x+2)" "->" "ul(x^4+2x^3)" "larr" Subtract"#
#" "0-2x^3+0x^2-3x-5#
#color(magenta)(-2x^2)(x+2)" "->" "ul( -2x^3-4x^2)" "larr" Subtract"#
#" "0+4x^2-3x-5#
#" "color(magenta)(4x)(x+2) " "->" "ul(4x^2+8x)" "larr" Subtract" #
#" "0-11x-5#
#color(magenta)(-11)(x+2)" "->" "ul(-11x-22 )" "larr" Sub."#
#" "0+17#

Where the final value of #color(magenta)("17 is the remainder")#

#(x^4-3x-5)/(x+2) = color(magenta)(x^3-2x^2+4x-11+17/(x+2))#