How do you evaluate cos((17pi)/6) cos(17π6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Apr 15, 2016 cos((17pi)/6)=cos(3pi-pi/6)=-cos(pi/6)=-sqrt3/2cos(17π6)=cos(3π−π6)=−cos(π6)=−√32 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 15998 views around the world You can reuse this answer Creative Commons License