How do you evaluate cos[2 arcsin (-3/5) - arctan (5/12)]?

1 Answer
May 30, 2016

=+-24/325 and +-144/325.

Explanation:

Let a = arc sin (-3/5). Then, sin a = -3/5<0.

a is in the 3rd quadrant or in the 4th.

So, cos a = +-4/5

Let b = arc tan (5/12). Then, tan b = 5/12>0.

b is in the 1st quadrant or in the 3rd.

So, sin b = +-(5/13) and cos b = +- (12/13).

Now, the given expression

= cos (2a-b)=cos 2a cos b + sin 2a sin b

=(1-2 sin^2 a)cos b + (2 sin a cos a) sin b

=(1-2(-3/5)^2)(+-12/13)+2 (-3/5)(+-4/5)(+-5/13)

=+-(7/25)(12/13)+-(12/65)

=+-84/325+-12/65

=+-144/325 and +-24/325.