cos((6pi)/5)
=cos(pi+pi/5)
=-cos( pi/5)
Now let
theta=pi/5
=>5theta=pi
=>3theta=pi-2theta
=>sin3theta=sin(pi-2theta)
=>sin3theta=sin2theta
=>3sintheta-4sin^3theta=2sinthetacostheta
=>sintheta(3-4sin^2theta)=2sinthetacostheta
=>(3-4sin^2theta)=2costheta as sintheta =sin(pi/5)!=0
=>(3-4+4cos^2theta)=2costheta
=>4cos^2theta-2costheta-1=0
So
costheta=(2pmsqrt((-2)^2-4xx4(-1)))/(2xx4)
costheta=(2pm2sqrt5)/(2xx4)
costheta=(1pmsqrt5)/4
as costheta=(1-sqrt5)/4<0" not possible"
costheta=(1+sqrt5)/4
=>cos(pi/5)=
So
cos((6pi)/5)=-cos(pi/5)=-(1+sqrt5)/4