How do you evaluate cos((6pi)/5)cos(6π5)?

1 Answer
Mar 25, 2017

cos((6pi)/5)cos(6π5)

=cos(pi+pi/5)=cos(π+π5)

=-cos( pi/5)=cos(π5)

Now let

theta=pi/5θ=π5

=>5theta=pi5θ=π

=>3theta=pi-2theta3θ=π2θ

=>sin3theta=sin(pi-2theta)sin3θ=sin(π2θ)

=>sin3theta=sin2thetasin3θ=sin2θ

=>3sintheta-4sin^3theta=2sinthetacostheta3sinθ4sin3θ=2sinθcosθ

=>sintheta(3-4sin^2theta)=2sinthetacosthetasinθ(34sin2θ)=2sinθcosθ

=>(3-4sin^2theta)=2costheta(34sin2θ)=2cosθ as sintheta =sin(pi/5)!=0sinθ=sin(π5)0

=>(3-4+4cos^2theta)=2costheta(34+4cos2θ)=2cosθ

=>4cos^2theta-2costheta-1=04cos2θ2cosθ1=0

So

costheta=(2pmsqrt((-2)^2-4xx4(-1)))/(2xx4)cosθ=2±(2)24×4(1)2×4

costheta=(2pm2sqrt5)/(2xx4)cosθ=2±252×4

costheta=(1pmsqrt5)/4cosθ=1±54

as costheta=(1-sqrt5)/4<0" not possible"cosθ=154<0 not possible

costheta=(1+sqrt5)/4cosθ=1+54

=>cos(pi/5)=cos(π5)=

So

cos((6pi)/5)=-cos(pi/5)=-(1+sqrt5)/4cos(6π5)=cos(π5)=1+54