#cos((6pi)/5)#
#=cos(pi+pi/5)#
#=-cos( pi/5)#
Now let
#theta=pi/5#
#=>5theta=pi#
#=>3theta=pi-2theta#
#=>sin3theta=sin(pi-2theta)#
#=>sin3theta=sin2theta#
#=>3sintheta-4sin^3theta=2sinthetacostheta#
#=>sintheta(3-4sin^2theta)=2sinthetacostheta#
#=>(3-4sin^2theta)=2costheta# as #sintheta =sin(pi/5)!=0#
#=>(3-4+4cos^2theta)=2costheta#
#=>4cos^2theta-2costheta-1=0#
So
#costheta=(2pmsqrt((-2)^2-4xx4(-1)))/(2xx4)#
#costheta=(2pm2sqrt5)/(2xx4)#
#costheta=(1pmsqrt5)/4#
as # costheta=(1-sqrt5)/4<0" not possible"#
#costheta=(1+sqrt5)/4#
#=>cos(pi/5)=#
So
#cos((6pi)/5)=-cos(pi/5)=-(1+sqrt5)/4#