cos((6pi)/5)cos(6π5)
=cos(pi+pi/5)=cos(π+π5)
=-cos( pi/5)=−cos(π5)
Now let
theta=pi/5θ=π5
=>5theta=pi⇒5θ=π
=>3theta=pi-2theta⇒3θ=π−2θ
=>sin3theta=sin(pi-2theta)⇒sin3θ=sin(π−2θ)
=>sin3theta=sin2theta⇒sin3θ=sin2θ
=>3sintheta-4sin^3theta=2sinthetacostheta⇒3sinθ−4sin3θ=2sinθcosθ
=>sintheta(3-4sin^2theta)=2sinthetacostheta⇒sinθ(3−4sin2θ)=2sinθcosθ
=>(3-4sin^2theta)=2costheta⇒(3−4sin2θ)=2cosθ as sintheta =sin(pi/5)!=0sinθ=sin(π5)≠0
=>(3-4+4cos^2theta)=2costheta⇒(3−4+4cos2θ)=2cosθ
=>4cos^2theta-2costheta-1=0⇒4cos2θ−2cosθ−1=0
So
costheta=(2pmsqrt((-2)^2-4xx4(-1)))/(2xx4)cosθ=2±√(−2)2−4×4(−1)2×4
costheta=(2pm2sqrt5)/(2xx4)cosθ=2±2√52×4
costheta=(1pmsqrt5)/4cosθ=1±√54
as costheta=(1-sqrt5)/4<0" not possible"cosθ=1−√54<0 not possible
costheta=(1+sqrt5)/4cosθ=1+√54
=>cos(pi/5)=⇒cos(π5)=
So
cos((6pi)/5)=-cos(pi/5)=-(1+sqrt5)/4cos(6π5)=−cos(π5)=−1+√54