How do you evaluate cos((6pi)/5)?

1 Answer
Mar 25, 2017

cos((6pi)/5)

=cos(pi+pi/5)

=-cos( pi/5)

Now let

theta=pi/5

=>5theta=pi

=>3theta=pi-2theta

=>sin3theta=sin(pi-2theta)

=>sin3theta=sin2theta

=>3sintheta-4sin^3theta=2sinthetacostheta

=>sintheta(3-4sin^2theta)=2sinthetacostheta

=>(3-4sin^2theta)=2costheta as sintheta =sin(pi/5)!=0

=>(3-4+4cos^2theta)=2costheta

=>4cos^2theta-2costheta-1=0

So

costheta=(2pmsqrt((-2)^2-4xx4(-1)))/(2xx4)

costheta=(2pm2sqrt5)/(2xx4)

costheta=(1pmsqrt5)/4

as costheta=(1-sqrt5)/4<0" not possible"

costheta=(1+sqrt5)/4

=>cos(pi/5)=

So

cos((6pi)/5)=-cos(pi/5)=-(1+sqrt5)/4