How do you evaluate cos ((7 pi)/3 + (15 pi)/4)cos(7π3+15π4)?

1 Answer
Jun 4, 2016

=(sqrt 3+1)/(2 sqrt 2)=3+122

Explanation:

cos ((7pi)/3+(15pi)/4)cos(7π3+15π4)

=cos (2pi+pi/3 + 4pi-pi/4)=cos(2π+π3+4ππ4)

=cos(6pi+(pi/3--pi/4))=cos(6π+(π3π4))

=cos (pi/3-pi/4)=cos(π3π4)

=cos(pi/3)cos(pi/4)+sin(pi/3)sin(pi/4)=cos(π3)cos(π4)+sin(π3)sin(π4)

=(1/2)(1/sqrt 2)+(sqrt 3/2)(1/sqrt 2)=(12)(12)+(32)(12)

=(sqrt 3+1)/(2 sqrt 2)=3+122