cos ((7pi)/3+(15pi)/4)cos(7π3+15π4)
=cos (2pi+pi/3 + 4pi-pi/4)=cos(2π+π3+4π−π4)
=cos(6pi+(pi/3--pi/4))=cos(6π+(π3−−π4))
=cos (pi/3-pi/4)=cos(π3−π4)
=cos(pi/3)cos(pi/4)+sin(pi/3)sin(pi/4)=cos(π3)cos(π4)+sin(π3)sin(π4)
=(1/2)(1/sqrt 2)+(sqrt 3/2)(1/sqrt 2)=(12)(1√2)+(√32)(1√2)
=(sqrt 3+1)/(2 sqrt 2)=√3+12√2