How do you evaluate cos 75?

1 Answer
Nov 20, 2016

cos(75^@)=((sqrt(3)-1)sqrt(2))/4 ~~0.258819

Explanation:

General Formula:
color(white)("XXX")cos(A+B)=cos(A) * cos(B) - sin(A) * sin(B)

Note: 75^@ = 30^@ +45^@

30^@ and 45^@ are two of the standard angles with:
color(white)("XXX")cos(30^@)=sqrt(3)/2color(white)("XXX")sin(30^@)=1/2

color(white)("XXX")cos(45^@)=sqrt(2)/2color(white)("XXX")sin(45^@)=sqrt(2)/2

Therefore
cos(75^@) =cos(30^@+45^@)

color(white)("XXX")=cos(30^@) * cos(45^@) -sin(30^@) * sin(45^@)

color(white)("XXX")=sqrt(3)/2 * sqrt(2)/2 - 1/2 * sqrt(2)/2

color(white)("XXX")=((sqrt(3)-1)sqrt(2))/4

(using a calculator)
color(white)("XXX")~~0.258819