How do you evaluate cot((11pi)/6)cot(11π6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shell Sep 25, 2016 cot(11pi)/6 = -sqrt3cot(11π)6=−√3 Explanation: cot((11pi)/6)cot(11π6) Recall the identity cottheta=costheta/sinthetacotθ=cosθsinθ Using the unit circle, cos((11pi)/6)=sqrt3/2cos(11π6)=√32 and sin((11pi)/6)=-1/2sin(11π6)=−12 cot((11pi)/6)=frac{sqrt3/2}{-1/2}=sqrt3/2 * -2/1=-sqrt3cot(11π6)=√32−12=√32⋅−21=−√3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 4185 views around the world You can reuse this answer Creative Commons License