How do you evaluate cot(210) ? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Nov 21, 2015 We have that sin 210 = sin (30 + 180) = -sin 30 = -1/2sin210=sin(30+180)=−sin30=−12 cos 210 = cos (30 + 180) = -cos 30 = (-sqrt3)/2cos210=cos(30+180)=−cos30=−√32 cot 210 = cos 210/sin 210 = [(-sqrt3)/2]:(-1/2) = sqrt3cot210=cos210sin210=[−√32]:(−12)=√3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2303 views around the world You can reuse this answer Creative Commons License