How do you evaluate cot(arcsin(x-1))cot(arcsin(x1)) without a calculator?

1 Answer
Nov 27, 2016

sqrt(2x-x^2)/(x-1), x in [0, 2]2xx2x1,x[0,2]

Explanation:

Let a =arc sin ( x - 1 ) in [-pi/2, pi/2]a=arcsin(x1)[π2,π2].

Then sin a = x-1 in [-1, 1] to x in [0, 2]sina=x1[1,1]x[0,2].

The given expression

cot a = cos a/sin a=sqrt (1-sin^2a)/sin a=sqrt(1-(x-1)^2)/(x-1)=sqrt(2x-x^2)/(x-1)cota=cosasina=1sin2asina=1(x1)2x1=2xx2x1