How do you evaluate csc 75? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Ratnaker Mehta Jul 22, 2016 csc75=(sqrt6-sqrt2)~=1.0353.. Explanation: To find csc75, we first find sin75 :- sin75=sin(45+30)=sin45cos30+cos45sin30 =1/sqrt2*sqrt3/2+1/sqrt2*1/2 =(sqrt3+1)/(2sqrt2) =(sqrt6+sqrt2)/4. Hence, csc75=1/sin75 =4/(sqrt6+sqrt2) {4(sqrt6-sqrt2)}/{(sqrt6+sqrt2)(sqrt6-sqrt2)} =(sqrt6-sqrt2). Taking, sqrt6~=2.4495, and, sqrt2~=1.4142, we get, csc75~=2.4495-1.4142~=1.0353. Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 9004 views around the world You can reuse this answer Creative Commons License