Reminder :
Euler's relation
#e^(itheta)=costheta+isintheta#
Here, we have
#z=e^(13/8pi)-e^(5/4pi)=cos(13/8pi)+isin(13/8pi)-cos(5/4pi)-isin(5/4pi)#
Therefore,
#13/8pi=5/8pi+pi=1/8pi+3/2pi#
#5/4pi=1/4pi+pi#
#cos(1/4pi)=1-2sin^2(1/8pi)=2cos^2(1/8pi)-1#
#sin(1/8pi)=sqrt((1-cos(1/4pi))/2)=sqrt((1-sqrt2/2)/(2))=(sqrt(2-sqrt2))/2#
#cos(1/8pi)=sqrt((1+cos(1/4pi))/2)=sqrt((1+sqrt2/2)/(2))=(sqrt(2+sqrt2))/2##
So,
#z=cos(1/8pi+3/2pi)+isin(1/8pi+3/2pi)-cos(1/4pi+pi)-isin(1/4pi+pi)#
#cos(1/8pi+3/2pi)=cos(1/8pi)cos(3/2pi)-sin(1/8pi)sin(3/2pi)#
#=(sqrt(2+sqrt2))/2*0-(sqrt(2-sqrt2))/2*(-1)=(sqrt(2-sqrt2))/2#
#sin(1/8pi+3/2pi)=sin(1/8pi)cos(3/2pi)+cos(1/8pi)sin(3/2pi)#
#=(sqrt(2-sqrt2))/2*0+(sqrt(2+sqrt2))/2*(-1)=-(sqrt(2+sqrt2))/2#
#cos(1/4pi+pi)=cos(1/4pi)cos(pi)-sin(1/4pi)sin(pi)#
#=sqrt2/2*-1-sqrt2/2*0=-sqrt2/2#
#sin(1/4pi+pi)=sin(1/4pi)cos(pi)+cos(1/4pi)sin(pi)#
#=sqrt2/2*-1+sqrt2/2*0=sqrt2/2#
Finally,
#z=(sqrt(2-sqrt2))/2-i(sqrt(2+sqrt2))/2+sqrt2/2-isqrt2/2#
#=((sqrt(2-sqrt2))/2+sqrt2/2)-i((sqrt(2+sqrt2))/2+sqrt2/2)#