How do you evaluate e^( ( pi)/4 i) - e^( ( 11 pi)/6 i)eπ4i−e11π6i using trigonometric functions?
1 Answer
May 26, 2017
Explanation:
There is a special formula for complex numbers that we will use to solve this problem:
e^(i theta) = costheta +isinthetaeiθ=cosθ+isinθ
Therefore, we can rewrite this problem as:
e^(pi/4i)-e^((11pi)/6i)eπ4i−e11π6i
=cos(pi/4)+isin(pi/4)-cos((11pi)/6)-isin((11pi)/6)=cos(π4)+isin(π4)−cos(11π6)−isin(11π6)
Now all we have to do is simplify.
=sqrt2/2+sqrt2/2i-sqrt3/2-(-1/2i)=√22+√22i−√32−(−12i)
=(sqrt2-sqrt3)/2 + (sqrt2+1)/2i=√2−√32+√2+12i
So
Final Answer