How do you evaluate e^( ( pi)/4 i) - e^( ( 11 pi)/6 i)eπ4ie11π6i using trigonometric functions?

1 Answer
May 26, 2017

e^(pi/4i)-e^((11pi)/6i)=(sqrt2-sqrt3)/2 + (sqrt2+1)/2ieπ4ie11π6i=232+2+12i

Explanation:

There is a special formula for complex numbers that we will use to solve this problem:

e^(i theta) = costheta +isinthetaeiθ=cosθ+isinθ

Therefore, we can rewrite this problem as:

e^(pi/4i)-e^((11pi)/6i)eπ4ie11π6i

=cos(pi/4)+isin(pi/4)-cos((11pi)/6)-isin((11pi)/6)=cos(π4)+isin(π4)cos(11π6)isin(11π6)

Now all we have to do is simplify.

=sqrt2/2+sqrt2/2i-sqrt3/2-(-1/2i)=22+22i32(12i)

=(sqrt2-sqrt3)/2 + (sqrt2+1)/2i=232+2+12i

So e^(pi/4i)-e^((11pi)/6i)=(sqrt2-sqrt3)/2 + (sqrt2+1)/2ieπ4ie11π6i=232+2+12i

Final Answer