How do you evaluate [(13+i73)+(4+i13)](43+i)?

2 Answers

(173)+i(53)

Explanation:

Adding the real parts

13+4+43=173

Adding the imaginary parts

73+131=53

Hence, the sum is

Re(z)+Im(z)

where z is a complex number.

Jan 30, 2018

Use the distributive property to distribute the implied -1 through the parenthesis of the last term, then remove the braces and parenthesis and combine like terms.

Explanation:

Given: [(13+i73)+(4+i13)](43+i)

Distribute the implied -1:

[(13+i73)+(4+i13)]+(43i)

Remove the braces and parenthesis:

13+i73+4+i13+43i

Combine like terms:

13+4+43+i(73+131)

173+i53