How do you evaluate ln(ln e^(e^100))ln(lnee100)?

2 Answers
Mar 31, 2016

100

Explanation:

ln (e^a)=aln(ea)=a
The bracketed logarithm ln( (e)^(e^100))=e^100ln((e)e100)=e100
The given expression = ln (e^100)ln(e100) = 100.

Apr 5, 2016

100100

Explanation:

We have:

ln(ln(e^(e^100)))ln(ln(ee100))

Within the innermost logarithm, we can use the following rule:

ln(color(blue)a^color(red)b)=color(red)b*ln(color(blue)a)ln(ab)=bln(a)

This gives us:

ln(ln(color(blue)e^(color(red)(e^100))))=ln(color(red)(e^100)*ln(color(blue)(e)))ln(ln(ee100))=ln(e100ln(e))

Since ln(e)=1ln(e)=1, this equals

ln(e^100*ln(e))=ln(e^100)ln(e100ln(e))=ln(e100)

Using the previously defined exponent rule, we can rewrite this as follows:

ln(color(blue)e^color(red)100)=color(red)100*ln(color(blue)e)=barul|color(white)(a/a)100color(white)(a/a)|