How do you evaluate ln(ln e^(e^100))ln(lnee100)?
2 Answers
Mar 31, 2016
100
Explanation:
The bracketed logarithm
The given expression =
Apr 5, 2016
Explanation:
We have:
ln(ln(e^(e^100)))ln(ln(ee100))
Within the innermost logarithm, we can use the following rule:
ln(color(blue)a^color(red)b)=color(red)b*ln(color(blue)a)ln(ab)=b⋅ln(a)
This gives us:
ln(ln(color(blue)e^(color(red)(e^100))))=ln(color(red)(e^100)*ln(color(blue)(e)))ln(ln(ee100))=ln(e100⋅ln(e))
Since
ln(e^100*ln(e))=ln(e^100)ln(e100⋅ln(e))=ln(e100)
Using the previously defined exponent rule, we can rewrite this as follows:
ln(color(blue)e^color(red)100)=color(red)100*ln(color(blue)e)=barul|color(white)(a/a)100color(white)(a/a)|