How do you evaluate #sec((11pi)/6)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Oct 25, 2016 #(2sqrt3)/3# Explanation: #sec ((11pi)/6) = 1/(cos ((11pi)/6)# Trig table and unit circle --> #cos ((11pi)/6) = cos (-pi/6 + (12pi)/6) = cos (-pi/6 + 2pi) = # #= cos (-pi/6) = cos (pi/6) = sqrt3/2# There for: #sec ((11pi)/6) = 2/sqrt3 = (2sqrt3)/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2703 views around the world You can reuse this answer Creative Commons License