This is one of those rare questions that you can evaluate exactly using the sum and différence formulas.
First, though, let's define sectheta. By the reciprocal identities sectheta = 1/costheta
sec15
=1/cos15
Now, 15^@ can be written as 60^@ - 45^@
By the sum and différence identity cos(alpha - theta) = cosalphacostheta + sinalphasintheta
We can therefore state the following:
1/cos15 = 1/cos(60 - 45)
Expanding:
=1/(cos60cos45 + sin60sin45)
=1/(1/2 xx 1/sqrt(2) + sqrt(3)/2 xx 1/sqrt(2))
= 1/((1/(2sqrt(2)) + sqrt(3)/(2sqrt(2)))
= 1/((1 + sqrt(3))/(2sqrt2))
= (2sqrt(2))/(1 + sqrt(3))
Rationalizing the denominator:
= (2sqrt(2))/(1 + sqrt(3)) xx (1 - sqrt(3))/(1 - sqrt(3))
=(2sqrt(2) - 2sqrt(6))/-2
=(2(sqrt(2) - sqrt(6)))/-2
= sqrt6 - sqrt(2)
Therefore, sec15 = sqrt(6) - sqrt(2)
Hopefully this helps!