How do you evaluate sec 15 ?

1 Answer
Jun 3, 2016

Exact value:

Explanation:

This is one of those rare questions that you can evaluate exactly using the sum and différence formulas.

First, though, let's define sectheta. By the reciprocal identities sectheta = 1/costheta

sec15
=1/cos15

Now, 15^@ can be written as 60^@ - 45^@

By the sum and différence identity cos(alpha - theta) = cosalphacostheta + sinalphasintheta

We can therefore state the following:

1/cos15 = 1/cos(60 - 45)

Expanding:

=1/(cos60cos45 + sin60sin45)

=1/(1/2 xx 1/sqrt(2) + sqrt(3)/2 xx 1/sqrt(2))

= 1/((1/(2sqrt(2)) + sqrt(3)/(2sqrt(2)))

= 1/((1 + sqrt(3))/(2sqrt2))

= (2sqrt(2))/(1 + sqrt(3))

Rationalizing the denominator:

= (2sqrt(2))/(1 + sqrt(3)) xx (1 - sqrt(3))/(1 - sqrt(3))

=(2sqrt(2) - 2sqrt(6))/-2

=(2(sqrt(2) - sqrt(6)))/-2

= sqrt6 - sqrt(2)

Therefore, sec15 = sqrt(6) - sqrt(2)

Hopefully this helps!