How do you evaluate sec^2 (pi/3)sec2(π3)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Mar 26, 2016 sec^2(pi/3)=4sec2(π3)=4 Explanation: As cos(pi/3)=1/2cos(π3)=12, sec(pi/3)=1/(cos(pi/3))=1/(1/2)=2sec(π3)=1cos(π3)=112=2 Hence sec^2(pi/3)=2^2=4sec2(π3)=22=4 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 14087 views around the world You can reuse this answer Creative Commons License