How do you evaluate sin^-1(sin((5pi)/3))?

2 Answers
Mar 18, 2016

=(5pi)/3

Explanation:

Given sin^-1(sin((5pi)/3))
We know that
sin^-1(sin(x))=cancel(sin^-1)(cancel(sin)(x))=(x)
or =x

Following this we obtain
sin^-1(sin((5pi)/3))=(5pi)/3

Mar 18, 2016

(4pi)/3, (5pi)/3

Explanation:

Trig unit circle and trig table give -->
sin ((5pi)/3) = sin (-pi/3 + (6pi)/3) = sin (-pi/3 + 2pi) =
= - sin (pi/3) = -sqrt3/2.
Next, find arcsin (-sqrt3/2)
x = -sqrt3/2 --> 2 solutions -->
arc x = (4pi)/3 and arc x = -pi/3 , or x = (5pi)/3 (co-terminal)

Check.
x = (4pi)/3 --> sin x = - sin pi/3 = - sqrt3/2 = sin ((5pi)/3) . OK
x = (5pi)/3 --> sin x = -sin (pi/3) = -sqrt3/2 = sin ((5pi)/3). OK