How do you evaluate Sin 120sin120? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Jun 26, 2016 We have that sin(120)=sin(2*60)=2sin60*cos60=2*sqrt3/2*1/2=sqrt3/2sin(120)=sin(2⋅60)=2sin60⋅cos60=2⋅√32⋅12=√32 Also sin(120)=sin(180-60)=sin60=sqrt3/2sin(120)=sin(180−60)=sin60=√32 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 11004 views around the world You can reuse this answer Creative Commons License