How do you evaluate -sin((13pi)/12)sin(13π12)?

1 Answer
Apr 7, 2016

sqrt(2 - sqrt3)/2232

Explanation:

Trig unit circle and property of supplementary arc-->
- sin ((13pi)/12) = - sin (pi/12 + pi) = sin (pi/12)sin(13π12)=sin(π12+π)=sin(π12)
Evaluate sin (pi/12)sin(π12) by applying the trig identity:
cos 2a = 1 - 2sin^2 acos2a=12sin2a
cos (pi/6) = sqrt3/2 = 1 - 2sin^2 (pi/12)cos(π6)=32=12sin2(π12)
2sin^2 (pi/12) = 1 - sqrt3/2 = (2 - sqrt3)/22sin2(π12)=132=232
sin^2 (pi/12) = (2 - sqrt3)/4sin2(π12)=234
sin (pi/12) = +- sqrt(2 - sqrt3)/2sin(π12)=±232 -->
Since sin (pi/12)sin(π12) is positive, therefor:
- sin ((13pi)/12) = sin (pi/12) = sqrt(2 - sqrt3)/2sin(13π12)=sin(π12)=232