How do you evaluate sin((19pi)/12)cos(-pi/6) - cos((19pi)/12)sin(-pi/6)sin(19π12)cos(π6)cos(19π12)sin(π6)?

1 Answer
Mar 24, 2016

I found: -sqrt(2)/222

Explanation:

I think we can use the identity:
sin(x-y)=sin(x)cos(y)-sin(y)cos(x)sin(xy)=sin(x)cos(y)sin(y)cos(x)
where in our case:
x=19/12pix=1912π
y=-pi/6y=π6
so we get:
sin(19/12pi)cos(-pi/6)-sin(-pi/6)cos(19/12pi)=sin(19/12pi+pi/6)=sin(1912π)cos(π6)sin(π6)cos(1912π)=sin(1912π+π6)=
=sin((19+2)/12pi)=sin(21/12pi)=sin(7/4pi)=-sqrt(2)/2=sin(19+212π)=sin(2112π)=sin(74π)=22