How do you evaluate sin ((23pi) / 3) sin(23π3)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 22, 2016 -sqrt3/2−√32 Explanation: Trig table and trig unit circle --> sin ((23pi)/3) = sin (-pi/3 + (24pi)/3) = sin (-pi/3 + 8pi) =sin(23π3)=sin(−π3+24π3)=sin(−π3+8π)= = sin (-pi/3) = - sin (pi/3) = - sqrt3/2=sin(−π3)=−sin(π3)=−√32 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 8929 views around the world You can reuse this answer Creative Commons License