How do you evaluate (sin (π/ 6) cos (π /4) − sin (π/ 4) cos (π/ 6) )^2?

1 Answer
Feb 9, 2016

((2 - sqrt(3))/4)

As a decimal: .06699

Explanation:

sin(pi/6) = 1/2
cos(pi/6) = sqrt(3)/2
(http://mathworld.wolfram.com/TrigonometryAnglesPi6.html)

sin(pi/4) = cos(pi/4) = sqrt(2)/2

Now let's plug in:

(1/2*sqrt(2)/2 - sqrt(2)/2*sqrt(3)/2)^2

multiply the two terms:
(sqrt(2)/4 - sqrt(6)/4)^2

Consolidate the numerators:
((sqrt(2) - sqrt(6))/4)^2

Square the numerator and denominator:
((2 - 2sqrt(12) + 6)/16)

Gather like terms (2 and 6):
((8 - 2sqrt(12))/16)

Factor sqrt(12) -> sqrt(4) * sqrt(3)

((8 - 2*sqrt(4)*sqrt(3))/16)

sqrt(4) = 2

((8 - 2*2*sqrt(3))/16)

simplify:

((8 - 4*sqrt(3))/16)

Divide each term by 4:

((2 - sqrt(3))/4)

As a decimal: .06699