How do you evaluate sin(cos^-1(1/2)) without a calculator?

2 Answers
Mar 5, 2018

sin(cos^(-1)(1/2))=sqrt(3)/2

Explanation:

Let cos^(-1)(1/2)=x then cosx=1/2

rarrsinx=sqrt(1-cos^2x)=sqrt(1-(1/2)^2)=sqrt(3)/2

rarrx=sin^(-1)(sqrt(3)/2)=cos^(-1)(1/2)

Now, sin(cos^(-1)(1/2))=sin(sin^(-1)(sqrt(3)/2))=sqrt(3)/2

Mar 5, 2018

sin cos ^-1 (1/2)) = sqrt 3 / 2

Explanation:

To find value of sin (cos ^-1 (1/2))

Let theta = cos^-1 (1/2)#

cos theta = (1/2)

enter image source here

We know, from the above table, cos 60 = 1/2

Hence theta = 60^@#

Replacing cos^-1 (1/2) with theta = 60^@,

The sum becomes, => sin theta = sin 60 = sqrt3 / 2 (As per table above)