How do you evaluate Sin(pi/2) + 6 cos(pi/3) sin(π2)+6cos(π3)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Mar 19, 2016 4 Explanation: S = sin (pi/2) + 6cos(pi/3)S=sin(π2)+6cos(π3) Trig table gives -> sin (pi/2) = 1sin(π2)=1 cos (pi/3) = 1/2cos(π3)=12 Therefor, S = 1 + 6(1/2) = 1 + 3 = 4S=1+6(12)=1+3=4 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 1731 views around the world You can reuse this answer Creative Commons License