How do you evaluate tan ^ -1 ( -1)tan−1(−1)? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Shwetank Mauria Oct 22, 2016 tan^(-1)=-pi/4tan−1=−π4 Explanation: As tan(pi/4)=1tan(π4)=1 and tan(-theta)=-tanthetatan(−θ)=−tanθ tan(-pi/4)=-1tan(−π4)=−1 and tan^(-1)=-pi/4tan−1=−π4 Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))tan(arcsin(0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})sin(sin−1√22)? How do you find the exact value of \cos(tan^{-1}sqrt{3})cos(tan−1√3)? How do you evaluate \sec^{-1} \sqrt{2} sec−1√2? How do you find cos( cot^{-1} sqrt{3} )cos(cot−1√3) without a calculator? How do you rewrite sec^2 (tan^{-1} x)sec2(tan−1x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)sin−1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)cos−1(−√22)? How do you solve the inverse trig function sin(sin^-1 (1/3))sin(sin−1(13))? See all questions in Inverse Trigonometric Properties Impact of this question 4120 views around the world You can reuse this answer Creative Commons License