How do you evaluate tan^-1(tan((5pi)/6))?

2 Answers
Aug 4, 2016

=5pi/6

Explanation:

tan^-1(tan(5pi/6))
=5pi/6

Aug 4, 2016

tan^(-1)(tan((5pi)/6)) = -pi/6

Explanation:

theta = tan^(-1)(tan((5pi)/6)) by definition satisfies both of the conditions:

  • color(white)(X) tan theta = tan((5pi)/6)

  • color(white)(X) -pi/2 < theta < pi/2

Note that tan has period pi, so for any integer n:

tan ((5pi)/6 + npi) = tan ((5pi)/6)

When n = -1, we have:

(5pi)/6+npi = (5pi)/6 - pi = -pi/6

which lies in the range (-pi/2, pi/2), so satisfies the second condition for tan^(-1)

Thus:

tan^(-1)(tan((5pi)/6)) = -pi/6