How do you evaluate tan(210)tan(210)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Mar 6, 2017 sqrt3/3√33 Explanation: Use unit circle and trig table of special arcs: tan (210) = tan (30 + 180) = tan (30) = sqrt3/3tan(210)=tan(30+180)=tan(30)=√33 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 35140 views around the world You can reuse this answer Creative Commons License