How do you evaluate tan(3π4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer ali ergin Apr 25, 2016 tan(3π4)=−1 Explanation: 3π4=π−π4 a=π b=π4 tan(a−b)=tana−tanb1+tana⋅tanb tan(3π4)=tanπ−tan(π4)1+tanπ⋅tan(π4) tan(3π4)=0−11+0⋅1 tan(3π4)=−11 tan(3π4)=−1 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140∘? How do you find the value of cot300∘? What is the value of sin−45∘? How do you find the trigonometric functions of values that are greater than 360∘? How do you use the reference angles to find sin210cos330−tan135? How do you know if sin30=sin150? How do you show that (cosθ)(secθ)=1 if θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 7047 views around the world You can reuse this answer Creative Commons License