How do you evaluate tan ((7pi)/12)?

1 Answer
Mar 17, 2016

- sqrt(2 + sqrt3)/(sqrt2 - sqrt3)

Explanation:

On the trig unit circle,
tan ((7pi)/12) = tan (pi/12 + (6pi)/12) = tan (pi/12 + pi/2) = -cot (pi/12).
Find cot (pi/12) = cos (pi/12)/sin (pi/12)
Apply the trig identity: cos 2a = 2cos^2 a - 1 = 1 - 2sin^2 a.
cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1.
cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/4
cos (pi/12) = sqrt(2 + sqrt3)/2 --> (since (pi/12) is in Quadrant I)
By the same way:
sin (pi/12) = sqrt(2 - sqrt3)/2
Finally:
tan ((7pi)/12) = - cos/(sin) = - sqrt(2 + sqrt3)/(sqrt(2 - sqrt3))