How do you evaluate the integral int 1/(1+sqrtx)?

1 Answer
Dec 23, 2016

The answer is =2sqrtx-2ln(sqrtx+1)+ C

Explanation:

We can perform this integral by substitution

Let u=sqrtx, =>, du=(dx)/(2sqrtx)

So,

intdx/(sqrtx+1)=int(2sqrtxdu)/(u+1)

=2int(udu)/(u+1)

u/(u+1)=1-1/(u+1)

Therefore,

intdx/(sqrtx+1)=2int(1-1/(u+1))du

=2u-2ln(u+1)

=2sqrtx-2ln(sqrtx+1)+ C