How do you evaluate the integral int 1/(xsqrt(2+x^2))?
1 Answer
Explanation:
I=intdx/(xsqrt(2+x^2))
Use the substitution
Plugging this in shows that:
I=int(sqrt2sec^2thetad theta)/(sqrt2tanthetasqrt(2+2tan^2theta))
Note that
I=int(sqrt2sec^2thetad theta)/(sqrt2tantheta(sqrt2sectheta))=1/sqrt2intsectheta/tanthetad theta
Rewriting with
I=1/sqrt2int1/costhetacostheta/sinthetad theta=1/sqrt2intcscthetad theta=-1/sqrt2lnabs(csctheta+cottheta)
From the original substitution we have
Thus,
So:
I=-1/sqrt2lnabs((sqrt(x^2+2)+sqrt2)/x)+C
We can rewrite this using
I=1/sqrt2lnabs(x/(sqrt(x^2+2)+sqrt2))+C