How do you evaluate the integral int 1/(xsqrt(2+x^2))?

1 Answer
Jan 15, 2017

1/sqrt2lnabs(x/(sqrt(x^2+2)+sqrt2))+C

Explanation:

I=intdx/(xsqrt(2+x^2))

Use the substitution x=sqrt2tantheta. This implies that x^2=2tan^2theta and dx=sqrt2sec^2thetad theta.

Plugging this in shows that:

I=int(sqrt2sec^2thetad theta)/(sqrt2tanthetasqrt(2+2tan^2theta))

Note that sqrt(2+2tan^2theta)=sqrt2sqrt(1+tan^2theta)=sqrt2sectheta. This comes from the identity 1+tan^2theta=sec^2theta.

I=int(sqrt2sec^2thetad theta)/(sqrt2tantheta(sqrt2sectheta))=1/sqrt2intsectheta/tanthetad theta

Rewriting with sintheta and costheta:

I=1/sqrt2int1/costhetacostheta/sinthetad theta=1/sqrt2intcscthetad theta=-1/sqrt2lnabs(csctheta+cottheta)

From the original substitution we have tantheta=x/sqrt2. This correlates to a right triangle with the side opposite theta being x and the side adjacent to theta being sqrt2. The Pythagorean theorem gives the hypotenuse as sqrt(x^2+2).

Thus, csctheta is the hypotenuse over the opposite side, or csctheta=sqrt(x^2+2)/x and cottheta=1/tantheta=sqrt2/x.

So:

I=-1/sqrt2lnabs((sqrt(x^2+2)+sqrt2)/x)+C

We can rewrite this using Bln(A)=ln(A^B). In this case, we will use -ln(A)=ln(A^-1)=ln(1/A).

I=1/sqrt2lnabs(x/(sqrt(x^2+2)+sqrt2))+C