How do you evaluate the integral int 4^xsin(4^x)?
1 Answer
Jan 20, 2017
Explanation:
Because there are two
Differentiate using logarithmic differentiation.
lnu = ln(4^x)
1/u(du) = ln4dx
du = u ln4dx
du = 4^xln4dx
(du)/(4^xln4) = dx
Now substitute:
int4^xsinu * (du)/(4^xln4)
1/ln4intsinudu
-1/ln4cosu + C
-1/ln4cos(4^x) + C
Hopefully this helps!