How do you evaluate the integral int arcsin(5x-2)?

1 Answer
May 7, 2018

intarcsin(5x-2)dx=1/5((5x-2)arcsin(5x-2)+sqrt(1-(5x-2)²))+C, C in RR

Explanation:

intarcsin(5x-2)dx
Let t=5x-2
dt=5dx
intarcsin(5x-2)dx=1/5int5arcsin(5x-2)dx
=1/5intarcsin(t)dt
=1/5int1*arcsin(t)dt
Using Integration by parts :
intg'(t)f(t)dt=[g(t)f(t)]-intg(t)f'(t)dt
There:
g'(t) =1 f(t)=arcsin(t)
g(t)=t, f'(t)=1/sqrt(1-t²)
So: 1/5intarcsin(t)dt=1/5([tarcsin(t)]-intt/sqrt(1-t²)dt)
Now let u=sqrt(1-t²)
du=-t/sqrt(1-t²)dt
So:1/5([tarcsin(t)]-intt/sqrt(1-t²)dt)=1/5([tarcsin(t)]+int1du)
=1/5([tarcsin(t)]+u)
=1/5(tarcsin(t)+sqrt(1-t²))
=1/5((5x-2)arcsin(5x-2)+sqrt(1-(5x-2)²))+C, C in RR
\0/ here's our answer!